Fixing Tournaments for Kings, Chokers, and More

نویسندگان

  • Michael P. Kim
  • Virginia Vassilevska Williams
چکیده

We study the tournament fixing problem (TFP), which asks whether a tournament organizer can rig a single-elimination (SE) tournament such that their favorite player wins, simply by adjusting the initial seeding. Prior results give two perspectives of TFP: on the one hand, deciding whether an arbitrary player can win any SE tournament is known to be NP-complete; on the other hand, there are a number of known conditions, under which a player is guaranteed to win some SE tournament. We extend and connect both these lines of work. We show that for a number of structured variants of the problem, where our player is seemingly strong, deciding whether the player can win any tournament is still NP-complete. Dual to this hardness result, we characterize a new set of sufficient conditions for a player to win a tournament. Further, we give an improved exact algorithm for deciding whether a player can win a tournament.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the 3-kings and 4-kings in multipartite tournaments

Koh and Tan gave a sufficient condition for a 3-partite tournament to have at least one 3-king in [K.M. Koh, B.P. Tan, Kings in multipartite tournaments, Discrete Math. 147 (1995) 171–183, Theorem 2]. In Theorem 1 of this paper, we extend this result to n-partite tournaments, where n 3. In [K.M. Koh, B.P. Tan, Number of 4-kings in bipartite tournaments with no 3-kings, Discrete Math. 154 (1996)...

متن کامل

The Complexity of Kings

A king in a directed graph is a node from which each node in the graph can be reached via paths of length at most two. There is a broad literature on tournaments (completely oriented digraphs), and it has been known for more than half a century that all tournaments have at least one king [Lan53]. Recently, kings have proven useful in theoretical computer science, in particular in the study of t...

متن کامل

Fixing Balanced Knockout and Double Elimination Tournaments

Balanced knockout tournaments are one of the most common formats for sports competitions, and are also used in elections and decision-making. We consider the computational problem of finding the optimal draw for a particular player in such a tournament. The problem has generated considerable research within AI in recent years. We prove that checking whether there exists a draw in which a player...

متن کامل

The number of kings in a multipartite tournament

We show that in any n-partite tournament, where n/> 3, with no transmitters and no 3-kings, the number of 4-kings is at least eight. All n-partite tournaments, where n/>3, having eight 4-kings and no 3-kings are completely characterized. This solves the problem proposed in Koh and Tan (accepted).

متن کامل

Searching for Sorted Sequences of Kings in Tournaments

A tournament Tn is an orientation of a complete graph on n vertices. A king in a tournament is a vertex from which every other vertex is reachable by a path of length at most 2. A sorted sequence of kings in a tournament Tn is an ordered list of its vertices u1, u2, . . . , un such that ui dominates ui+1 (ui → ui+1) and ui is a king in the subtournament induced by {uj : i ≤ j ≤ n} for each i = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015